Intermolecular Energy and Virial Function (Electrostatic) ========================================================= In this section, the virial and energy equation of electrostatic interaction for different potential function are discussed in details. Ewald ----- This option calculate electrostatic energy using standard *Ewald Summation Method*. .. note:: Once this option is activated, it would override the the electrostatic calculation using ``VDW``, ``EXP6``, ``SHIFT``, and ``SWITCH`` functions. ``Potential Calculation`` Coulomb interactions between atoms can be modeled as .. math:: E(\texttt{Ewald}) = E_{real} + E_{reciprocal} + E_{self} + E_{correction} :math:`E_{real}`: Defines the short range electrostatic energy according to .. math:: E_{real} = \frac{1}{4\pi \epsilon_0} \frac{1}{2} \sum_{i =1}^{N} \sum_{j = 1}^{N} q_i q_j \frac{erfc(\alpha r_{ij})}{r_{ij}} , where :math:`\alpha` is ``Ewald`` separation parameter according to .. math:: \alpha = \frac {\sqrt{-\log (Tolerance)}}{r_{cut}} , where ``Tolerance`` is a parameter, controlling the desired accuracy. :math:`E_{reciprocal}`: Defines the long range electrostatic energy according to, .. math:: E_{reciprocal} = \frac{1}{\epsilon_0 V} \frac {1}{2} \sum_{\overrightarrow{k} \ne 0}^{} \frac {1}{\overrightarrow{k}^2}\exp\bigg(\frac {-\overrightarrow{k}^2}{4 \alpha^2}\bigg) \Bigg[ {\Big| R_{sum} \Big|}^2 + {\Big| I_{sum} \Big|}^2 \bigg] , where :math:`\overrightarrow{k}` is reciprocal vector, :math:`R_{sum}` and :math:`I_{sum}` are, .. math:: R_{sum} = \sum_{i=1}^{N} q_i \cos \big(\overrightarrow{k}.\overrightarrow{x_i}\big) .. math:: I_{sum} = \sum_{i=1}^{N} q_i \sin \big(\overrightarrow{k}.\overrightarrow{x_i}\big) :math:`E_{self}`: Defines the self energy according to, .. math:: E_{self} = -\frac{\alpha}{4\pi \epsilon_0 \sqrt{\pi}} \sum_{i=1}^{N} {q_i}^2 :math:`E_{correction}`: Defines intra-molecule nonbonded energy, .. math:: E_{correction} = -\frac{1}{4\pi \epsilon_0} \frac{1}{2} \sum_{j=1}^{N }\sum_{l =1}^{N_j} \sum_{m = 1}^{N_j} q_{j_l} q_{j_m} \frac{erf(\alpha r_{j_l j_m})}{r_{j_l j_m}} ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance, Eq. 4. Coulomb force between atoms can be modeled as, .. math:: W_{Ewald} = W_{real} + W_{reciprocal} :math:`W_{real}` defines the short range electrostatic and :math:`W_{reciprocal}` defines the long range electrostatic force according to, .. math:: W_{real} = \frac{1}{4\pi \epsilon_0} \frac{1}{2} \sum_{i =1}^{N} \sum_{j = 1}^{N} q_i q_j \bigg[ \frac{erfc(\alpha r_{ij})}{r_{ij}} + \frac{2\alpha}{ \sqrt{\pi}} \exp(-\alpha^2 {r_{ij}}^2) \bigg] \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}^2} .. math:: \begin{split} W_{reciprocal} = \frac{1}{\epsilon_0 V} \frac {1}{2} \sum_{\overrightarrow{k} \ne 0}^{} \Bigg[\frac {1}{\overrightarrow{k}^2}\exp\bigg(\frac {-\overrightarrow{k}^2}{4 \alpha^2}\bigg) \bigg( {\Big| R_{sum} \Big|}^2 + {\Big| I_{sum} \Big|}^2 \bigg) \bigg( 1 - \frac{\overrightarrow{k}^2}{2\alpha^2} \bigg) \Bigg] +\\ \sum_{i=1}^{N} \frac{1}{\epsilon_0 V} \sum_{\overrightarrow{k} \ne 0}^{} \Bigg[ \frac {q_i}{\overrightarrow{k}^2}\exp\bigg(\frac {-\overrightarrow{k}^2}{4 \alpha^2}\bigg) \bigg[ I_{sum} \times\cos(\overrightarrow{k}.\overrightarrow{x_i}) - R_{sum} \times \sin(\overrightarrow{k}.\overrightarrow{x_i}) \bigg] \Bigg] \times \big( \overrightarrow{k}.\overrightarrow{r_{ic}} \big) \end{split} , where :math:`\overrightarrow{r_{ic}}` is the vector between atom and the center of the mass of the molecule. VDW ---- Using ``VDW`` potential type without ``Ewald`` method, simply uses coulomb energy to calculate the electrostatic potential. ``Potential Calculation`` Coulomb interactions between atoms can be modeled as .. math:: E_{\texttt{Elect}}(r_{ij}) = \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}} ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance. .. math:: W_{\texttt{Elect}}(r_{ij}) = -\frac{dE_{\texttt{Elect}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{Elect}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} .. math:: F_{\texttt{Elect}}(r_{ij}) = \frac{q_i q_j}{4\pi \epsilon_0} \Big( \frac{1}{{r_{ij}}^2} \Big) EXP6 ---- Using ``EXP6`` potential type without ``Ewald`` method, simply uses coulomb energy to calculate the electrostatic potential. ``Potential Calculation`` Coulomb interactions between atoms can be modeled as .. math:: E_{\texttt{Elect}}(r_{ij}) = \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}} ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance. .. math:: W_{\texttt{Elect}}(r_{ij}) = -\frac{dE_{\texttt{Elect}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{Elect}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} .. math:: F_{\texttt{Elect}}(r_{ij}) = \frac{q_i q_j}{4\pi \epsilon_0} \Big( \frac{1}{{r_{ij}}^2} \Big) SHIFT ----- This option forces the electrostatic energy to be zero at ``Rcut`` distance. ``Potential Calculation`` Coulomb interactions between atoms can be modeled as .. math:: E_{\texttt{Elect}}(r_{ij}) = \frac{q_i q_j}{4\pi \epsilon_0} \Big( \frac{1}{r_{ij}} - \frac{1}{r_{cut}} \Big) ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance. .. math:: W_{\texttt{Elect}}(r_{ij}) = -\frac{dE_{\texttt{Elect}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{Elect}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} .. math:: F_{\texttt{Elect}}(r_{ij}) = \frac{q_i q_j}{4\pi \epsilon_0} \Big( \frac{1}{{r_{ij}}^2} \Big) SWITCH ------ This option in ``CHARMM`` or ``EXOTIC`` force field forces the electrostatic energy to be zero at ``Rcut`` distance. ``Potential Calculation`` Coulomb interactions between atoms can be modeled as, .. math:: E_{\texttt{Elect}}(r_{ij}) = \frac{q_i q_j}{4\pi \epsilon_0} \bigg( \Big(\frac{r_{ij}}{r_{cut}} \Big)^2 - 1.0\bigg)^2 \frac{1}{r_{ij}} ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance. .. math:: W_{\texttt{Elect}}(r_{ij}) = -\frac{dE_{\texttt{Elect}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{Elect}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} .. math:: F_{\texttt{Elect}}(r_{ij}) = \frac{q_i q_j}{4\pi \epsilon_0} \Bigg[ \bigg( \Big(\frac{r_{ij}}{r_{cut}} \Big)^2 - 1.0\bigg)^2 \frac{1}{{r_{ij}}^2} - \bigg( \frac{4}{{r_{cut}}^2} \bigg) \bigg( \Big(\frac{r_{ij}}{r_{cut}} \Big)^2 - 1.0\bigg) \Bigg] SWITCH (MARTINI) ---------------- This option in ``MARTINI`` force field smoothly forces the potential energy to be zero at ``Rcut`` distance and starts modifying the potential at ``Rswitch = 0.0`` distance. ``Potential Calculation`` Coulomb interactions between atoms can be modeled as, .. math:: E_{\texttt{Elect}}(r_{ij})=\frac{q_i q_j}{4\pi\epsilon_0\epsilon_1}\bigg(\frac{1}{r_{ij}}+\varphi_{E, 1}(r_{ij})\bigg) , where :math:`\epsilon_1` is the dielectric constant, which in ``MARTINI`` force field is equal to 15.0 and :math:`\varphi_{E, \alpha = 1}(r_{ij})` is defined as: .. math:: \varphi_{E, \alpha}(r_{ij}) = \begin{cases} -C_{\alpha} & r_{ij} \leq r_{switch} \\ -\frac{A_{\alpha}}{3} (r_{ij} - r_{switch})^3 -\frac{B_{\alpha}}{4} (r_{ij} - r_{switch})^4 - C_{\alpha} & r_{switch} < r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases} .. math:: A_{\alpha} = \alpha \frac{(\alpha + 1) r_{switch} - (\alpha +4) r_{cut}} {{r_{cut}}^{(\alpha + 2)} {(r_{cut} - r_{switch})}^2} .. math:: B_{\alpha} = \alpha \frac{(\alpha + 1) r_{switch} - (\alpha +3) r_{cut}} {{r_{cut}}^{(\alpha + 2)} {(r_{cut} - r_{switch})}^3} .. math:: C_{\alpha} = \frac{1}{{r_{cut}}^{\alpha}} -\frac{A_{\alpha}}{3} (r_{cut} - r_{switch})^3 -\frac{B_{\alpha}}{4} (r_{cut} - r_{switch})^4 ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance. .. math:: W_{\texttt{Elect}}(r_{ij}) = -\frac{dE_{\texttt{Elect}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{Elect}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} .. math:: F_{\texttt{Elect}}(r_{ij})=\frac{q_iq_j}{4\pi\epsilon_0\epsilon_1}\bigg(\frac{1}{{r_{ij}}^2}+\varphi_{F, 1}(r_{ij})\bigg) , where :math:`\varphi_{F, \alpha = 1} (r_{ij})` is defined as: .. math:: \varphi_{F, \alpha}(r_{ij}) = \begin{cases} 0 & r_{ij} \leq r_{switch} \\ A_{\alpha} (r_{ij} - r_{switch})^2 + B_{\alpha} (r_{ij} - r_{switch})^3 & r_{switch} < r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases}