Intermolecular Energy and Virial Function (Van der Waals) ========================================================= In this section, the virial and energy equation of Van der Waals interaction for different potential function are discussed in details. VDW --- This option calculates potential energy without any truncation. ``Potential Calculation`` Interactions between atoms can be modeled with an n-6 potential, a Mie potential in which the attractive exponent is fixed. The Mie potential can be viewed as a generalized version of the 12-6 Lennard-Jones potential, .. math:: E_{\texttt{VDW}}(r_{ij}) = C_{n_{ij}} \epsilon_{ij} \bigg[\bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg] where :math:`r_{ij}`, :math:`\epsilon_{ij}`, and :math:`\sigma_{ij}` are, respectively, the separation, minimum potential, and collision diameter for the pair of interaction sites :math:`i` and :math:`j`. The constant :math:`C_n` is a normalization factor such that the minimum of the potential remains at :math:`-\epsilon_{ij}` for all :math:`n_{ij}`. In the 12-6 potential, :math:`C_n` reduces to the familiar value of 4. .. math:: C_{n_{ij}} = \bigg(\frac{n_{ij}}{n_{ij} - 6} \bigg)\bigg(\frac{n_{ij}}{6} \bigg)^{6/(n_{ij} - 6)} ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance. .. math:: W_{\texttt{VDW}}(r_{ij}) = -\frac{dE_{\texttt{VDW}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{VDW}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} Using n-6 LJ potential defined above: .. math:: F_{\texttt{VDW}}(r_{ij}) = 6C_{n_{ij}} \epsilon_{ij} \bigg[\frac{n_{ij}}{6} \times \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg]\times \frac{1}{{r_{ij}}} .. note:: This option only evaluates the energy up to specified ``Rcut`` distance. Tail correction to energy and pressure can be specified to account for infinite cutoff distance. EXP6 ---- This option calculates potential energy without any truncation. ``Potential Calculation`` Interactions between atoms can be modeled with an exp-6 (Buckingham) potential, .. math:: E_{\texttt{VDW}}(r_{ij}) = \begin{cases} \frac{\alpha_{ij}\epsilon_{ij}}{\alpha_{ij}-6} \bigg[\frac{6}{\alpha_{ij}} \exp\bigg(\alpha_{ij} \bigg[1-\frac{r_{ij}}{R_{min,ij}} \bigg]\bigg) - {\bigg(\frac{R_{min,ij}}{r_{ij}}\bigg)}^6 \bigg] & r_{ij} \geq R_{max,ij} \\ \infty & r_{ij} < R_{max,ij} \end{cases} where :math:`r_{ij}`, :math:`\epsilon_{ij}`, and :math:`R_{min,ij}` are, respectively, the separation, minimum potential, and minimum potential distance for the pair of interaction sites :math:`i` and :math:`j`. The constant :math:`\alpha_{ij}` is an exponential-6 parameter. The cutoff distance :math:`R_{max,ij}` is the smallest positive value for which :math:`\frac{dE_{\texttt{VDW}}(r_{ij})}{dr_{ij}}=0`. .. note:: In order to use ``Mie`` or ``Exotice`` potential file format for ``Buckingham`` potential, instead of defining :math:`R_{min}`, we define :math:`\sigma` (collision diameter or the distance, where potential is zero) and GOMC will calculate the :math:`R_{min}` and :math:`R_{max}` using ``Buckingham`` potential equation. ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance. .. math:: W_{\texttt{VDW}}(r_{ij}) = -\frac{dE_{\texttt{VDW}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{VDW}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} Using exp-6 potential defined above: .. math:: F_{\texttt{VDW}}(r_{ij}) = \begin{cases} \frac{6 \alpha_{ij}\epsilon_{ij}}{r_{ij}\big(\alpha_{ij}-6\big)} \bigg[\frac{r_{ij}}{R{min,ij}} \exp\bigg(\alpha_{ij} \bigg[1-\frac{r_{ij}}{R_{min,ij}} \bigg]\bigg) - {\bigg(\frac{R_{min,ij}}{r_{ij}}\bigg)}^6 \bigg] & r_{ij} \geq R_{max,ij} \\ \infty & r_{ij} < R_{max,ij} \end{cases} .. note:: This option only evaluates the energy up to specified ``Rcut`` distance. Tail correction to energy and pressure can be specified to account for infinite cutoff distance. .. figure:: static/VDW_Exp6.png :figwidth: 100% :width: 100% :align: center Graph of Van der Waals interaction for comparison of ``VDW`` and ``EXP6`` potentials. SHIFT ----- This option forces the potential energy to be zero at ``Rcut`` distance. ``Potential Calculation`` Interactions between atoms can be modeled with an n-6 potential, .. math:: E_{\texttt{VDW}}(r_{ij}) = C_{n_{ij}} \epsilon_{ij} \bigg[\bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg] - C_{n_{ij}} \epsilon_{ij} \bigg[\bigg(\frac{\sigma_{ij}}{r_{cut}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{cut}}\bigg)^6\bigg] where :math:`r_{ij}`, :math:`\epsilon_{ij}`, and :math:`\sigma_{ij}` are, respectively, the separation, minimum potential, and collision diameter for the pair of interaction sites :math:`i` and :math:`j`. The constant :math:`C_n` is a normalization factor according to Eq. 3, such that the minimum of the potential remains at :math:`-\epsilon_{ij}` for all :math:`n_{ij}`. In the 12-6 potential, :math:`C_n` reduces to the familiar value of 4. ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance. .. math:: W_{\texttt{VDW}}(r_{ij}) = -\frac{dE_{\texttt{VDW}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{VDW}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} Using ``SHIFT`` potential function defined above: .. math:: F_{\texttt{VDW}}(r_{ij}) = 6C_{n_{ij}} \epsilon_{ij} \bigg[\frac{n_{ij}}{6} \times \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg]\times \frac{1}{{r_{ij}}} .. figure:: static/VDW_SHIFT.png Graph of Van der Waals potential with and without the application of the ``SHIFT`` function. With the ``SHIFT`` function active, the potential by force was reduced to 0.0 at the ``Rcut`` distance. With the ``SHIFT`` function, there is a discontinuity where the potential is truncated. SWITCH ------ This option in ``CHARMM`` or ``EXOTIC`` force field smoothly forces the potential energy to be zero at Rcut distance and starts modifying the potential at Rswitch distance. ``Potential Calculation`` Interactions between atoms can be modeled with an n-6 potential, .. math:: E_{\texttt{VDW}}(r_{ij}) = C_{n_{ij}} \epsilon_{ij} \bigg[\bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg]\times \varphi_E(r_{ij}) where :math:`r_{ij}`, :math:`\epsilon_{ij}`, and :math:`\sigma_{ij}` are, respectively, the separation, minimum potential, and collision diameter for the pair of interaction sites :math:`i` and :math:`j`. The constant :math:`C_n` is a normalization factor according to Eq. 3, such that the minimum of the potential remains at :math:`-\epsilon_{ij}` for all :math:`n_{ij}`. In the 12-6 potential, :math:`C_n` reduces to the familiar value of 4. The factor :math:`\varphi_E` is defined as: .. math:: \varphi_E(r_{ij}) = \begin{cases} 1 & r_{ij} \leq r_{switch} \\ \frac{\big({r_{cut}}^2 - {r_{ij}}^2 \big)^2 \times \big({r_{cut}}^2 - 3{r_{switch}}^2 + 2{r_{ij}}^2 \big)}{\big({r_{cut}}^2 - {r_{switch}}^2 \big)^3} & r_{switch} < r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases} ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance. .. math:: W_{\texttt{VDW}}(r_{ij}) = -\frac{dE_{\texttt{VDW}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{VDW}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} Using SWITCH potential function defined above: .. math:: F_{\texttt{VDW}}(r_{ij}) = \Bigg[6 C_{n_{ij}} \epsilon_{ij} \bigg[\frac{n_{ij}}{6} \times \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg]\times \frac{\varphi_E(r_{ij})}{{r_{ij}}} - C_{n_{ij}} \epsilon_{ij} \bigg[\bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg] \times \varphi_F(r_{ij}) \Bigg] The factor :math:`\varphi_F` is defined as: .. math:: \varphi_F(r_{ij}) = \begin{cases} 0 & r_{ij} \leq r_{switch} \\ \frac{12r_{ij}\big({r_{cut}}^2 - {r_{ij}}^2 \big) \times \big({r_{switch}}^2 - {r_{ij}}^2 \big)}{\big({r_{cut}}^2 - {r_{switch}}^2 \big)^3} & r_{switch} < r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases} .. figure:: static/SWITCH.png Graph of Van der Waals potential with and without the application of the ``SWITCH`` function. With the ``SWITCH`` function active, the potential is smoothly reduced to 0.0 at the ``Rcut`` distance. SWITCH (MARTINI) ---------------- This option in ``MARTINI`` force field smoothly forces the potential energy to be zero at Rcut distance and starts modifying the potential at ``Rswitch`` distance. ``Potential Calculation`` Potential Calculation: Interactions between atoms can be modeled with an n-6 potential. In standard MARTINI, :math:`n` is equal to 12, .. math:: E_{\texttt{VDW}}(r_{ij}) = C_{n_{ij}}\epsilon_{ij} \Bigg[ {\sigma_{ij}}^{n} \bigg(\frac{1}{{r_{ij}}^{n}} + \varphi_{E, n} (r_{ij}) \bigg) - {\sigma_{ij}}^{6} \bigg(\frac{1}{{r_{ij}}^{6}} + \varphi_{E, 6} (r_{ij}) \bigg) \Bigg] where :math:`r_{ij}`, :math:`\epsilon_{ij}`, and :math:`\sigma_{ij}` are, respectively, the separation, minimum potential, and collision diameter for the pair of interaction sites :math:`i` and :math:`j`. The constant :math:`C_n` is a normalization factor according to Eq. 3, such that the minimum of the potential remains at :math:`-\epsilon_{ij}` for all :math:`n_{ij}`. In the 12-6 potential, :math:`C_n` reduces to the familiar value of 4. The factor :math:`\varphi_{E, \alpha}` and constants are defined as: .. math:: \varphi_{E, \alpha}(r_{ij}) = \begin{cases} -C_{\alpha} & r_{ij} \leq r_{switch} \\ -\frac{A_{\alpha}}{3} (r_{ij} - r_{switch})^3 -\frac{B_{\alpha}}{4} (r_{ij} - r_{switch})^4 - C_{\alpha} & r_{switch} < r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases} .. math:: A_{\alpha} = \alpha \frac{(\alpha + 1) r_{switch} - (\alpha +4) r_{cut}} {{r_{cut}}^{(\alpha + 2)} {(r_{cut} - r_{switch})}^2} .. math:: B_{\alpha} = \alpha \frac{(\alpha + 1) r_{switch} - (\alpha +3) r_{cut}} {{r_{cut}}^{(\alpha + 2)} {(r_{cut} - r_{switch})}^3} .. math:: C_{\alpha} = \frac{1}{{r_{cut}}^{\alpha}} -\frac{A_{\alpha}}{3} (r_{cut} - r_{switch})^3 -\frac{B_{\alpha}}{4} (r_{cut} - r_{switch})^4 ``Virial Calculation`` Virial is basically the negative derivative of energy with respect to distance, multiplied by distance. .. math:: W_{\texttt{VDW}}(r_{ij}) = -\frac{dE_{\texttt{VDW}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{VDW}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} Using the ``SWITCH`` potential function defined for ``MARTINI`` force field: .. math:: F_{\texttt{VDW}}(r_{ij}) = C_{n_{ij}}\epsilon_{ij} \Bigg[ {\sigma_{ij}}^{n} \bigg(\frac{n}{{r_{ij}}^{(n+1)}} + \varphi_{F, n} (r_{ij}) \bigg) - {\sigma_{ij}}^{6} \bigg(\frac{6}{{r_{ij}}^{(6+1)}} + \varphi_{F, 6} (r_{ij}) \bigg) \Bigg] The constants defined in Eq. 14-16 and the factor :math:`\varphi_{F, \alpha}` defined as: .. math:: \varphi_{F, \alpha}(r_{ij}) = \begin{cases} 0 & r_{ij} \leq r_{switch} \\ A_{\alpha} (r_{ij} - r_{switch})^2 + B_{\alpha} (r_{ij} - r_{switch})^3 & r_{switch} < r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases} .. figure:: static/MARTINI.png Graph of Van der Waals potential with and without the application of the ``SWITCH`` function in ``MARTINI`` force field. With the ``SWITCH`` function active, the potential is smoothly reduced to 0.0 at the ``Rcut`` distance.